AD=A069 094

UNCLASSIFIED
| o |

&

94

MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB

TWO WAYS TO INTERFACE A MOTOROLA M6800 MICROPROCESSOR TO A MODC==ETC(U)
F19628-78=C=0002

FEB 79 L E EATON
ESD=TR=79-29

| EEEEE

END

DATE
FILMED

7 79

F/6 9/2




60690V

02 314 900




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

v TWO WAYS TO INTERFACE A MOTOROLA M6800
MICROPROCESSOR TO A MODCOMP COMPUTER

L. E. EATON
Group 94

PROJECT REPORT ETS-34

22 FEBRUARY 1979

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

9 05 25 o35




ABSTRACT
: Two interfaces have been developed hetween a Motorola M6800 micro-
"f processor and a ModComp computer. One interface uses a word by word
3 handshaking-interrupt design to control the main telescope at the GEODSS
ETS. The other interface uses a stringed message transfer for com-
' munication to the microprocessor development system. Both interfaces
. are described in this report.
ACCESSION for 1~
NTIS White Section
Doc Buff Ssstion (7
UNANNOUNCED o
JUSTIFICATION . | ?
: BY _
. DISTRIBTIGN/ AVAL AN TY COPES
foict. 7 LACIAL
7 -
v
1
3
111 4

Y ":

43 4 - il 3 or



I.

II.

III.

IV.

VI.

TABLE OF CONTENTS

ABSTRACT 114
INTRODUCTION 1
A BRIEF EXPLANATION OF MOTOROLA'S PERIPHERAL INTERFACE

ADAPTER 4
A. IN GENERAL 4
B. THREE REGISTERS WITHIN EACH CHANNEL OF THE PIA 7
C. THE TWO CONTROL LINES OF EACH CHANNEL 8
D. CONFIGURING THE CONTROL REGISTERS 8
THE TELESCOPE CONTROL LOGIC ADDRESS BUS, BI-DIRECTIONAL

DATA BUS AND PRIORITY INTERRUPT STRUCTURE 1
WORD BY WORD HANDSHAKING INTERFACE 15
STRINGED MESSAGE INTERFACE 18

A.  DATA FROM MICROPROCESSOR TO MODCOMP VIA A SCRATCH
PAC MEMORY ' 18

B. DATA FROM MODCOMP TO MICROPROCESSOR VIA A SCRATCH

PAD MEMORY 21
SOFTWARE CONSIDERATIONS FOR Tl'!E TWO INTERFACES 25
A. WORD BY WORD INTERFACE 25
B. STRINGED MESSAGE INTERFACE 26




N P I T P T AT v

A P ——

I. INTRODUCTION

Two interfaces have been developed at the GEODSS ETS between a
Motorola M6800 microprocessor and a ModComp computer. Ome interface is
a "word by word handshaking design", and the other is a "stringed
message' design.

The stringed message interface is used at GEODSS as the communication
between the ModComp and the microprocessor that controls a 31" Boller
and Chivens telescope. The handshaking design interfaces the ModComp to
Motorola's EXORciser (Motorola's development systeam for their micro-
processor).

The two interfaces incorporate two philosophies of design. The
handshaking interface allows one word at a time to be transferred between
the two systems. A status bit at the microprocessor and an interrupt at
the ModComp implement the handshaking. The stringed message interface
allows the sending device to transmit up to 16, 16-bit words before the
receiving device is required to read the data.

The body of this report is divided into five sections. The first
(Section II) is a brief description of Motorola's Peripheral Interface
Adapter (PIA) and the mode in which it is used at the ETS. The PIA is
Motorola's method of interfacing the microprocessor's 1/0 bus to the
outside world.

The next section (Section III) describes how the PIA's, the external
telescope control logic, and the I/0 software interact. This interaction

is based on the development of an external address and data bus implemented

through the PIA's.




L B e

e Ll w5 <

s

This separate external address and hi-directional data hus .(separate
from the microprocessor's I/0 bus) was developed, using the PIA, to
allow the logic to appear to the software as 256 external 8-bit registers.
These registers were used in the design of the controlling logic for a
31" Boller and Chivens telescope as well as the communications to a -
ModComp computer.

Section IV is the description of the word by word interface between
the ModComp and the microprocessor. The word by word interface is used
for communication between the EXORciser and the ModComp. This interface
is used to allow the ModComp to be a replacement for the original
teletype that was the EXORciser's line printer and data storage medium.

The stringed message interface (described in Section V) is used at
the ETS to transmit information between the ModComp and the Motorola

microprocessor controlling the 31" Boller and Chivens telescope. This

interface is described as a message type interface because as many as 16,
16-bit words can be transmitted before the receiving unit must read the
message. The interface allows the ModComp to send data in 16-bit words
while the microprocessor reads the data in 8-bit bytes. In sending data
from the microprocessor to the ModComp, the interface packs the 8-bit
microprocessor words into 16-bit words for the ModComp to read. «
Section VI describes the software considerations that would be used
by a programmer to implement these interfaces. No attempt is made to

explain the actual software handlers used.




This report attempts to meet two goals. One is to give the reader,
who is interested in an interface between a ModComp computer and a
Motorola M6800 microprocessor, an overview of two specific types of
interfaces. Sccondiy. it is hoped that this report describes the interfaces
in enough detail so that the reader obtains a basic understanding of the
design at the ETS. Although the reader will probably need logic prints,
their inclusion in this report would be cumbersome. Consequently, block
diagrams and verbal delcriptions_have been used as substitutes for the
prints. Also, each section refers to the appropriate logic prints that

are filed at the GEODSS ETS site.




II. A BRIEF EXPLANATION OF MOTOROLA'S PERIPHERAL INTERFACE ADAPTER

A. IN GENERAL

Motorola's Peripheral Interface Adapter (PIA), MC6820, is an IC

that interfaces the microproceééors I/0 bus system to the outside world.

Although a very detailed description of the chip‘is given in the Motorola
Application Manual, a brief description of its functions is given here,
based on how the PIA is used in our system.
Motorola's microprocessor system does not have any I/0 instructions.
Instead, all peripheral IC's, such as a PIA, have a unique location in
core.
Each PIA has two 8-bit peripheral register channels with two associated

8-bit control registers, so that a PIA appears as 4 memory locations in

core. Also accessible within the PIA is a Data Direction Register

(DDR). This register is used to define the 8-bit data lines as either

inputs or outputs. There are also two control lines for each channel on

the PIA. The A (B) channel uses CAl (CBl1) and CA2 (CB2). The PIA's

configuration prejudices the user to define channel A as an input channel
and B as an output channel. They are used this way in the GEODSS system.
The PIA's are used in both the EXORciser interface design and the

telescope interface design to perform four functions:

1. Input data from the external logic

T —

2. Output data to the logic




o

!
t

3. Input a 3-bit priority interrupt number

4. Output an 8-bit logic register address

These functions need two input channels and two output channels and
thus two PIA's were used.

Table 1 gives the core locations where these channels are configured
in the ETS system, along with the software mnemonic used in the telescope

control program. It is advantageous to use a mmemonic to allow the address

of each PIA to be defined only once in the program. Figure 1 is a block

£

diagram of the PIA illustrating the above.

TABLE 1

Address, Software Mnemonic, and Register

Description of System PIA's

SOFIWARE
ADDRESS MNEMONIC REGISTER

$7FF8 INDATA PIA #1, Chan A periph reg or DDR

$7FF9 PIACIA PIA #1, Chan A ctrl reg

$7FFA OUDATA PIA #1, Chan B periph reg or DDR

$7FFB PIAC1B PIA #1, Chan B ctrl reg

$7FFC INTREG PIA #2, Chan A periph reg or DDR

$7FFD PIAC2A PIA #2, Chan A ctrl reg

$7FFE ADRBUS PIA #2, Chan B periph reg or DDR

PIA #2, Chan B ctrl reg




ETS-34(1) CONTROL LINES

DATA TO/FROM
PERIPHERAL

CONTROL LINES

DATA TO/FROM
PERTPHERAL

8

b

8
Tl CA2

PFRIPHERAL DATA
REGISTER A

TEEFIT

PERIPHERAL DATA
REGISTER B

DATA DIRE%ION REG B

@ = INPUT
1 = OUTPUT .
L__CONTROL REGISTER A | |_CONTROL REGISTER B _
REG SEL, R/W :
A IRQB
MPU DATA BUS TO MPU TO MPU
TO ADDR DEC
LOGIC

Fig. 1. Block diagram of Peripheral Interface Adapter (PIA).

e




B. THREE REGISTERS WITHIN EACH CHANNEL OF THE PIA
1. Peripheral Register - This is the register that either
inputs or outputs data (depending on the state of the DDR) from/to the
outside world.

2. Data Direction Register (DDR) - This register defines the

direction of each of the 8 peripheral register lines as being input or
output lines (1 = output, @ = input).

3. Control Register - This register is used to control the

various functions of the PIA. It allows the software to do the following:
a) enable/disable interrupts within the PIA
b) access the DDR
c) determine if an interrupt has occurred on a PIA

d) define the state of one of the hardware control lines

to be in the pulse modé, bit 3 following mode, or handshaking

mode
set the other control line so that an interrupt occurs on a
low-high or high-low going edge.

As a note - each half of a PIA looks like two core locations to the
software. But there are 3 registers that can be accessed by the software.
The peripheral register and the DDR have the same address. The control
register has the other address. Whether the peripheral register or the
DDR is being accessed is determined by the state of bit @2 in the control
register. If -

bit 2 = @ : software can talk to DDR

= ] : software can talk tc peripheral register.




C. THE TWO CONTROL LINES OF EACH CHANNEL

Each channel of the PIA has two control lines CAl (CBl) and CA2
(CB2). These lines are used for various modes of interfacing to a
peripheral device. The particular mode is determined by the control
register. For our application, the PIA's are configured in the so-
called pulse mode of operation. That is, on control line 2 a pﬁlse
accompanies the data upon output to channel B (CB2). A pulse also
occurs when data are input from channel A (CA2). Thus, the external
logic has a pulse associated with the data during I/0 operations. The
logic calls this pulse a data sync pulse (DSP).

The other control line is configured as an interfupt control. For
our system, it is oniy used in the one PIA that is interfaced to the
priority interrupt logic. This interrupt is simply passed through the
PIA to the iiﬁlinput of the microprocessor.

D. CONFIGURING THE CONTROL REGISTERS

As previously stated, PIA's can be coﬁfigured in several modes, all
of which are described in detail in the Application Manual and the
Microprocessor Course Manual. However, only the pulse mode will be
described here. This mode sends a pulse on control line CA2 (or CB2)
when the software does a read (or write) to the particular PIA. This
pulse indicates to the logic that the data is valid (for OUTDATA and
ARDBUS) or that the data is being read (for INDATA and INTREG). For

this configuration, the control register bits 3 - 5 are set as follows:

bit 5 =1




bit 4 = ¢

bit 3 = 1
Control lines CAl and CBl are used as interrupt lines. For an
interrupt to occur on the low to high transition of a line, bit 1 of

the control register must be 1. Enabling of the interrupt is controlled

by bit §.
bit 1 bit @

1 ¢ low to high transition (bit 1 = 1)
of CAl (CBl) interrupt disabled
(bict ¢ = @)

1 1 low to high tramsition (bit 1 = 1)
of CAl (CBl) interrupts enabled
(bit ¢ = 1)

The ETS system uses control line CAl on PIA #2 as the only interrupt
to the microprocessor CPU, Bit 7 of the PIA's control register will be -
set to 1 when an 1nterru§t occurs, This is passed on to the MPU's iia
line causing it to go low., The software's interrupt handler must then
read the data from the PIA (INTREG) to determine which level caused the
interrupt. This read will clear bit 7, allowing another interrupt
sequence to occur.

The Data Direction Register (DDR) is accessed by setting bit 2 1ﬁ
the control register to §. Then, instead of addressing the peripheral
register, the DDR will be addressed. Setting all 1's in the DDR defines
the peripheral register as an output fegiater and all @'s defines it as an

input register.




The following initialization program will put the PIA's in

the proper configuration for the ETS hardware.

INDATA
PIACI1A
OUDATA
PIAC1B
INTREG
PIAC2A
ADRBUS
PIAC2B

PRDIPM

PREIPM

[

ORG $FFF8

RMB 1

RMB 1

RMB 1

RMB 1

RMB 1

RMB 1

RMB 1

RMB 1

ORG $XXXX
LDAA #50
STAA PIACI1A
STAA PIAC1B
STAA PIAC2A
STAA PIAC2B
LDAA #$FF
STAA ADRBUS
STAA OUDATA
LDAA #500
STAA INDATA
STAA INTREG
LDAA PRDIMPM
STAA PIAC1A
STAA PIAC1B
STAA PIAC2A
STAA PIAC2B
END

FCB $2E
FCB $2F

S i gbaas

kbt e e b

LOC OF PIA'S

PIAlA per reg or DDR ($7FF8)
PIAlA ctrl reg ($7FF9)
PIA1B per reg or DDR ($7FFA)
PIALB ctrl reg ($7FFB)
PIA2A per reg or DDR ($7FFC)
PIA2A ctrl reg ($7FFD)
PIA2B per reg or DDR ($7FFE)
PIA2B ctrl reg ($7FFF)

select DDR for all PIA's

define DDR as output
for ADRBUS and OUDATA

define DDR as input
for INDATA and INTREG

define all PIA's as -
sel per reg (PR), disable int
(DI) and pulse mode (PM)

Sel periph reg (PR), dis int (DI),
Pulse Mode (PM)

Sel periph reg (PR), en int (EI),
Pulse Mode (PM)

10




Lo\ a A i

e s

NG A B i 7.

TR T P TR e

d o o o T
T i s S y fhlea i e s e -~

I1I. THE TELESCOPE CONTROL LOGIC ADDRESS BUS, BI-DIRECTIONAL DATA

BUS AND PRIORITY INTERRUPT STRUCTURE

The interfaces between the Modcomp and microprocessor evolved from

the generalized logic design for controlling the Boller and Chivens 31"

telescope. The philosophy of this design was to build a versatile
enough interface so that modifications and improvements could all be
done within the software. In general, the design uses two PIA's to
create an external address/bi-directional data bus system. One PIA
channel is used to create an 8-bit address bus capéble of accessing up
to 256 external 8-bit logic registers. Two other channels input data
and output data. The last channel is used to input a 3-bit priority
interrupt code.

The data are transferred on a tri-state bi-directional data bus.
One channel of the PIA inputs data from the bus, and the other channel
outputs data.

Figure 2 gives a block diagram of the interface logic. To the

software, the logic appears as 256, 8-bit registers. These registers

are accessed by the software storing an 8-bit number to the Logic Address

PIA (ADRBUS). This 8-bit code becomes the address for one of the registers.

If it is an output type register (microprocessor to logic), that register

will be enabled to accept data from the tri-state bi-directional data

bus. This data will come via fhe Output PIA (OUDATA). If the selected
register is an input type register (from logic to microprocessor), then
only that register will place its data on the bus for a subsequent read

via the Input PIA (INDATA).

11

s i TP Mo T ich Al i i i 4 . IERIRENRIEIRAR. 2, T WO Tt N e




*10s8s920adoadTm wWoij/o3 O80T 20eJiajuy 2dodseTa3 jo weaderp yoord 7 *8ra

*01d ‘WAW°JO¥DIN OL

*VId VIVONO ?43 yBnoayl a37am juanbasqns uodn %
s19318f89a1 ad43 TNJINO o3ur ®Iep 3dedde 03 dFB07 sIxI[® - 10 - = 7
VId VIVANI 3y3 y8noay3 Youi m |
speaa juanbasqns 103 €nq BIVP TPUOTINIITP-Fq OFBoT ay3 uo == S = i
v3ep ad£3 INJNI Ind 03 9F80T 3yl s3i1a[® snq SS3IPP® 3ITq g YL e 7 (=] i
. . . Vid 5
QINNII0 IVHL °SON EYIIITIn LANWEAINT _ 2 s
21901 14 b
3d00SITAL :
438 oM X 2 y
— $9a¥ 104100 0L | ] 4 :
| VIvano :2071
— Eeay a1 :
i V14 viva _ o
—_— sng 1ndlno 21901 [
SYALSION viva 119 8
21901 IVHOLIOZYIA-19 m nan
3400STTEL 21501 Yupaws "l 0089K
vid <._.<n,|_

. INdNI DI901
L

7

]

_ _w SATIAV :001
| SN9 SSTWAAV 119 8 1901 vid

¥aAQV 01901




ST

R

e AT A

e i A

Each time a word is input or output, the address bus is incremented

by 1. This allows successive registers to be accessed without sending
a new address to the ADRBUS PIA. This increases I/0 speed considerably.

The priority interrupt structure is shown in Figure 3. The structure
interfaces an 8 level priority scheme to the MPU Tia level. One channel
of the PIA is dedicated to these interrupts,

The software can be interrupted on any one of 8 levels (level @
being the highest priority). These levels are decoded into a 3-bit
code. The interrupt is sent to the PIA (INTREG) and then transferred
on to the MPU, IRQ level. The software then inputs the 3-bit code
from the interrupt PIA to determine which level interrupted the
systenm,

These interrupts are enabled and disabled by the software storing
data into the enable register which is one of 256 registers in the

system.

13

SIS NINE -



‘u8ysap 3dnaiajur £3raorad 31q g jo weadeyp yoorg ‘¢ °*BTd

DY GVNE OL
¢ = oM T
ndR 20
ndn 9 118
LANMNEINT
nan
4+ = Ap—Q

(1288

aINdd0 1VHL

*gVSIa Ol ¢ = ‘4VNT 01 T = 119 43y
°8,457 € NI daT9VNa
3d OL SI IVHL # LJNWEAINI

NI 8
o]
ANIT €

rﬂl

A

L INI

*SON °INI ¥0d
2000 119 €
V2 vVid

(9TMINI) VT Vid

b +
401¥d - =
aNIT € - =
= = (a1 239yBTH)
ok ¢ ¢ 1
aNIT 8 JIaE.Qi avNa 3 +
(£)95-543

@VO 00d

VORISR

il




NGS5 A B e A

Y e

sl B e B\ b .

IV. WORD BY WORD HANDSHAKING INTERFACE

This interface is a one word (8 bits) type transfer between the
ModComp and the microprocessor. The handshaking is done by an interrupt
at the ModComp and by status checking at the microprocessor. Figure 4
shows the block diagram.

The register type interface to the microprocessor described in
Section III, is used to def;ne an input register, an output register and
a status register for the data transfer. The word by word interface was
incorporated to allow the EXORciser to use the ModComp as a peripheral
device. The EXORciser receives source code, etc., from the ModComp and
sends object code and listing information to the ModComp. A slight
modification to the Motorola EXBUG 1/0 software was made to adapt this
interface.

The ModComp computer interfaces to the outside world through a
system called an Input/Output Interface Subsystem (I/0IS). This is a
very straight forward design. Each I/0IS channel can be configured as
an input (16 bits) or output (16 bits) with an associated sync pulse.
There is also an interrupt coupler card which allows external interrupts
to be coupled to the ModComp.

For the word by word handshaking interface one 16-bit channel is
used for an input channel and one as an output. Only the lower 8 bits
are used since this is the word size for the microprocessor.

I/01IS channel 11 is used to send data from the ModComp to the

EXORciser. This is an output channel. The ModComp sends 8 bits of data

(8 LSB's) when it is interrupted on I/OIS Data Interrupt 1. The vectoring

15

3




*90BJI93UT IISTOYOXA BT01030K 03 dwo)dpol jo weiBefp HOold

(10dNI) ZT TENNVHD SI0/I

(981 = ST 379) ST-89 SIIE O/H

'VIVG SANES °*dO¥OIN

©
h S

*dO¥OIH
9¢ o

‘v 811

sne viva

ey~ TVNOLLOZY 1A~ 14
8

NEHA QALINE¥AINI O/W
IV# °001 °D03A ‘laNWEAINI

VIVQd SQVad °dOdDIN
NIHEM QALINMIILNI D/R

$ 114

(L 119 FEVMIIOS) GASK

s

viva
saviy JI/n
N3HM ¢ =

SALVIS 934 10dlN0 = ¢ 114

SALVLIS O34 INdNI = £ 1I¥

(9 119 FVMLIOS) 4ST|

oM
SNIV1S
*dO¥DIN

#9s OZ

[ A

~t>> VI1Vd SAN3S

*dO¥DIW NIHM T = ¢ 378

Viva savad
*dO¥OIK NZHM § =

VIVQ SANES O/W

~SyEEn T = L 116

1v# *001 "O3A ‘LINWHALNI

L 118

&1

(€51 = ST 3740) ST-g9 SIIE O/ >
(104100) TT TANNVED S10/1

o1

16




e O R AAS o

location within the ModComp is core location #Al (# = hex). The interrupt
comes when the microprocessor reads the last word sent.

When the ModComp is to receive data, it does so through channel 12
(an input channel) and is alerted by receiving an interrupt on Data
Interrupt 2. The ModComp vectoring location is found at #A2. The

interrupt occurs when the microprocessor sends a word.

There are three of the 256 external registers used at the microprocessor

as the transfering registers. Register #@1 is used to read data from
the ModComp, and register #@#2 is used to send data to the ModComp.
Register #@f is used as a status register to tell the software when to
send or receive data.

The microprocessor can read data (from reg #¢1) whenever the LSB in
register #0p is a 1 (status is good), indicating the ModComp has sent a
word. By reading the data, the LSB is changed to a zero (status bad).
The bit goes good again when the ModComp pends another word.

The microprocessor may send a word to the ModComp whenever the MSB
in register @ is a 1 (status good). Upon sending a word to register
§2, the ModComp is interrupted, and the status bit is set to a .

When the ModComp reads the word, the status goes good (i.e., MSB reg #00
= 1), and the microprocessor can send another word.

The interrupt/status arrangement is an invert type interface. That
is, when the microprocessor status is good it may send data. When it does
send data, the status goes bad and the ModComp is interrupted.

The logic prints for this interface can be found on prints titled,

EXI, AICN-11 and AICN-12.

17




o,

i o) S sl 2 T

V. STRINGED MESSAGE INTERFACE
This interface is used to send telescope data to the ModComp and to

receive commands from the ModComp.

The same address/register interface is used at the microprocessor as

described in Section III and the I/OIS on the ModComp is used for data
input and output (one channel for each).

The basic design incorporates a scratch pad memory (SPM). For each
direction up to 16, 16-bit words can be stored in a SPM before the
receiving device reads the data. These two 16 word by 16 bit SPM's
appear to the microprocessor software as 32 input type registers and

32 output type registers of the 256 total registers described in Section

III.

The logic diagrams for this interface can be found on the prints
titled AICN-8B, AICN-9B, TIB-4 and PCC (TIB-6).

A. DATA FROM MICROPROCESSOR TO MODCOMP VIA A SPM

Figure 5 shows a block diagram of the transfer of data from the
microprocessor to the SPM and then on to the ModComp. The SPM is the
central tie point. The design packs the data from 8-bit words out of the
microprocessor to 16-bit words into the ModComp.

X Output from the Microprocessor to the SPM

Since the SPM 1s 16 words x 16 bits long, and the microprocessor is

an 8-bit word, the SPM appears to the microprocessor as 32 hardware output

type registers. The starting address is $EP (end = S$FF).

Since the ModComp has to read the same memofy, to avoid conflict

it was decided to let the microprocessor have control of the memory at

e T R




*(%-911 ® €98-NOIV) °°®3jaajul — 192JSueil
98essouw paBurils — dwoppoy 03 10s8s920adoidTuw jo weiSerp YooTd

‘G 871
) )
i sne
Rds ) viva
VIvga- 7 <
.qh 119 ¢ 8 ; 1901
8 X %r
@son 91
was 2
4 8 e
8 D - aoFl.{I\IITJ x P
g’ ol Od.. P 21901
ason 91
(i&@ %493 Suppeo]
83 *doIdTR uvegA pug)

. <t

(S)ve-S13




any time. The ModComp will not read when the status to the ModComp is
bad which will be when the microprocessor is writi@g. The ;tatus will
be bad any time the address bus has a $E@-$FF on it.

The 8 bits of data from the microprocessor are multipiexed into the
2, 8 bit SPMs by the LSB of the register address bus. This is done by
putting the LSB straight to the chip select (CS) of one SPM and inverting
the LSB before going to the second SPM. The next 4 LSB's become the
address to the memory and will only change for every two words sent to
the SPM's.

The address to the memory comes from the microprocessor (when it

writes to the SPM) or from a counter (which the ModComb inérements) when

the ModComp reads the data. This address is jam loaded into the counter

when coming from the microprocessor. The jam loading is controlled by

the status bit. 1If the ModComé has control, the load input is high, and

the counter can increment. The ModComp starts reading the SPMIfrom

address zero because when the microprocessor is through writing, a one-
& shot is fired which clears the counter and sets the status good.

Even though the SPM is 16 words long, the ETS design only uses 15
words (30 for the microprocessor), because the ModComp has only 15
general purpose registers. The one-shot that clears the counter and
sets the status good again, is fired upon a decode of address S$FE.

2. Input to the ModComp from the SPM

The ModComp reads the SPM when the status to channel 8 (input) is

good. The ModComp checks the status before reading the data. If the

+

P T




status is good, it proceeds to read the 15 words. The status is also

checked after the data has been read by the ModComp. If the status is

bad after the transfer, the ModComwp ignores the data, waits for the status {
: to go good, then rereads the SPM. The ModComp will read the SPM in the

| burst mode (15 successive readg, non-interrupted). This takes approximately

: 22 us. The microprocessor takes longer to write new data and thus a status J

ok

? check after the burst mode read will indicate if the microprocessor is !
writing data.
The SPM address counter will always be left cleared by the micro-
processor. Therefore, the ModComp knows that the first word read is in 3
location #. When the counter gets to 15, it is automatically cleared
back to §. It is incremented by one for each read.
B. DATA FROM MODCOMP TO MICROPROCESSOR VIA SPM

Figure 6 shows the block diagram of the transfer of data from the

ModComp to another SPM and then to the microprocessor. The SPM is again

the main tie point and allows the data to go from 16-bit words from th-

ModComp to 8-bit words into the microprocessor.

1. Data from the ModComp to the SPM

For this direction, the ModComp is allowed to send data if the status

to I/0IS channel 9 is good. This will be true if the microprocessor has

cleared the status (interrupt) flip-flop.

The address to the SPM is multiplexed by the decoding of the address

bus for addresses $40-$5F. These are the 32, 8-bit registers that the SPM

represents. If the microprocessor is not selecting these registers, then

the multiplexer will allow a counter to address the memory. This counter

21

ook



*20BJI93UT — I33jsueil
a8essou pa8urils — 1ossadoadoidoyu 03 dwoppoy jo weadeyp Yoold °9 °314

g acs-ovs | * JOUDIN WOUA
8,8SH € 40003 SO p—
; sng
SSTEAAV D> 7
21901 8,851 ¢ Sm.cﬂf
1« et uan
s9 Ny
WS aav \
114 8 Y .
y D¢ 1as :
7 viva A.I»x.l d e =
8 @IOM 9T . ( 119 ¥
vl W
I O
/
2snd
tous-amo Jol0ES ] oﬁmochw
(9] | ano
R ATAVEEIOTHI-
sag 119 8 | ) "
i i w 8 @ion 9T Ivis D - 91 ——
3 -
‘dodom  + = I
* LIMINT«Y 7
b a +
V —m SOLVIS 6 BD
(9)9e-513 11 SUVATO °JO¥DIN TIINA AVE SAIVIS

—— oo e e e S e R T
T — T TR x




is incremented by the I/0 sync pulse associated with the output data
from the ModComp. The address starts at @ because the counter is kept
cleared by a re-triggerable one-shot. The clear is lifted upon the
first word sent from the ModComp. The ModComp must send the data in the
so-called burst mode, which means uninterrupted words at 1.6 us apart.
The one-shot has a 4 us time out so that 4 us after the last word is
sent, the counter will clear back to #.

When the last word is sent, the E'side of the one-shot will set the
status-interrupt flip/flop, interrupting the microprocessor and setting
the ModComp status bad (=@).

The interrupt indicates to the microprocessor that the SPM has data
to be read. After the data are read and processed, the microprocessor
will clear the status flip/flop alerting the ModComp that it may send
more data.

2% Data from the SPM to the Microprocessor

When the microprocessor is interrupted, it will read the data from
the SPM as though the SPM represents registers $4@-$5D. Thus, the first
8-bit word will be read by the microprocessor putting a $4¢ on the
address bus. This will switch the multiplexer to steer the address to
the SPM from the microprocessor address bus. The LSB of the address bus
will go to the chip select of the SPM. One SPM will have this line
inverted. So when register $41 is selected, the opposite SPM will put
data on the data bus. The next four bits will go to the address lines
of both SPM's. These four bits will only change after every two reads

by the microprocessor.

23

s —




Again, the LSB of the microprocessor register address controls the
chip select, thus enabling only one SPM per word read by the microprocessor.
The next 4 address bits go to the address lines of the SPM and will only

change after every two reads by the microprocessor.

For the telescope system at GEODSS, it has been decided that when

the ModComp software has sent a burst of data, it will make the last

word a #FFFF. The #FFFF indicates to the microprocessor software that

the rest of the data in the SPM is not valid for this message.
After the microprocessor software detects two successive $FF's (the

first being on an even register address), it knows that this is the last

word sent by the ModComp. It will then process the data and finally

clear the status flip/flop, indicating to the ModComp that more data can
be sent. Although not specifically shown in the block diagram, the

"clear status pulse" is generated by the microprocessor selecting register

$5F and output anything to it. The logic address bus will no longer be

sitting between $40-$5E. Thus, the ''enable memory address" (signal from

the decode logic) will switch the address multiplexer to the ModComp's

control.

s e

S i M o e et




A S s YT

VI. SOFIWARE CONSIDERATIONS FOR THE TWO INTERFACES

A, WORD BY WORD INTERFACE

The interface between the EXORciser and the ModComp uses channels 11
and 12 on the I/0IS. ModComp to EXORciser is through channel 11. This is
an output channel. EXORciser to ModComp is through channel 12 which is an
input channel.

1. EXORciser to ModComp

When the EXORciser is sending data to the ModComp, it does so with
interrupt handshaking. It sends an 8-bit word to logic register $¢2f
interrupting the ModComp on the I/OIS Data Interrupt 2 at vector location
#A2. The status to the EXORciser is set to @#. The status is determined
by reading register $@@, MSB bit. It is a @ when the data has been sent
to the ModComp and goes to a 1 when the ModComp reads the data. The
ModComp initializes this channel by doing a dummy read from channel 12
before enabling the interrupt. The 8 bits of data are in bits @8 - 15
of the ModComp, with bit @8 being the MSB.‘

2. ModComp to EXORciser

The EXORciser reads data sent by the ModComp whenever the LSB bit
in hardware register $@¢@ goes to a 1. This indicates that the ModComp
sent a word. The EXORciser loops on testing this bit until the bit goes
to a 1; then it reads the 8-bit word the ModComp has sent. The EXORciser
reads this word from hardware register $@1. Upon reading this data, the

ModComp is interrupted through Data Interrupt 1 on the I/0IS. The vector

location for this interrupt is #Al. If the ModComp has more data to send,




it may do so. Otherwise, it will ignore the interrupt. The status to

: the EXORciser stays bad until the ModComp sends another 8-bit word. The

: i data is sent through channel 11 with the 8 bits being in bits @#8-15, bit
@8 being the MSB, The channel is initialized by the EXORciser doing a

dumnmy read from register $61.

PR

B. STRINGED MESSAGE INTERFACE
This interface uses channel 8 (input to ModComp) of the I/OIS and
channel 9 (output from ModComp) for transfer of data.

1. Data from ModComp to Microprocessor

To send data to the telescope, the ModComp software first checks
the status of channel 9. If it is good (=1), then it sends data (up to

15, 16-bit words) to the microprocessor. It must send the data in the

burst mode (successive outputs with interrupts disabled). The last word
sent will be all 1's. After the last word is sent, the microprocessor
will be interrupted, at which time it selects register $4@ and reads

data until two successive $FF's are encountered. The first $FF must be
on an even address. Two successive $FF's indicate an end of transmission

of data. The microprocessor processes this data; and when it is ready

to accept more data, it clears the status to I/0IS channel 9 by outputting
anything to register $5F. Clearing the status allows channel 9 to send :
more data.

2. Data from Microprocessor to ModComp

To receive data from the microprocessor, the ModComp reads the data

from I/0IS channel 8. It does so by first checking the status. If it

26




is good (=1), it reads 15 words in the burst mode (successive input data L

instructions with interrupts disabled). The status is again checked.

If the status is now bad, the data is ignored. The procedure is repeated. #
!

1f the status is good, thé data is assumed good and is processed. g

The microprocessor will send 30,8-bit words to the SPM by first selecting
register $Ef. The data can be sent at any time, since the microprocessor
has precedence over the interface. Thirty 8-bit words will be sent out.

During this time, 1/01S channel 8's status will go bad. It will go good

when address register $FE is selected. Since the register address bus is
incremented after each data word is sent by the microprocessor, the soft-

ware does not have to keep re-selecting a new register address.

RIS ISPy o

27




UNCLASSIFIED
SECURITY CL ICATION OF THIS PAGE (WAen Dota Eniered)

REPORT DOCUMENTATION PAGE BEPORS COMPLETING FORN
2. GOVT ACCESSION NO. [ 3. RECIPIENT'S CATALOG NUMBER

&

L5

: f4~J{TLE (and Subtitle)
: L~ k

2 _J/Two Ways Fo Interface X Motorola M68p§ /
: / Microprodessor To X ModComp Computer ,

T

‘ TR
[ J—AQTHOR(2) 7 T TR ore endl
<'0 Lawrie E.|Eaton | - < 2 m%zs-7s—c-mz 7

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Lincoln Laboratory, M.L. T. | AREA & WORK UNIT NUMBERS 1
P.O. Box 73 £ Program Elgment No. 63428F .
Lexington, MA 02173 /6 212

11. CONTROLLING OFFICE NAME AND ADDRESS / \REPORT T —

Air Force Systems Command, USAF / / 22 Febyusmy 1979 (
Andrews AFB 3
Washington, DC 20331 3. NU;:!R OF PAGES

14. MONITORING AGENCY NAME & ADDRESS (if differens from Controlling Office) 15. SECURITY CLASS. (of this report) :
Electronic Systems Division e Unclassified
Hanscom AFB 'a ) 36/

Bedford, MA 01731 F ’ 15a. sogfé.:&s_cglcnwu DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if differens from Report)

18. SUPPLEMENTARY NOTES

None .
19. KEY WORDS (Continue on reverse side if y and identify by block number) !
interfaces microprocessor ModComp P
e e ey n
2. ABSTRACT (C on side if y ond fy by block )

o interfaces have been developed between a Motorola M6800 microprocessor and a
ModComp computer. One interface uses a word by word handshaking-interrupt design to
control the main telescope at the GEODSS ETS. The other interface uses a stringed message

i transfer for communication to the microprocessor development system. Both interfaces
g are described in this report,

A

FORM
2] 10000 93 1473 EO/TION OF 1 NOV 65 1S OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WAen Data Entered)

207 650 13




